
[kEYGENING RSA-512]
OR

[MAKING A KEYGEN FOR bart's PRGN cRACKME]
(c) by [bLaCk-eye/K23]

INTRO:

It's been quite a while since i managed to solve this crypto crackme, but didn't
strugle to much to make a tutorial because it was already solved and becuase i didn't have
the time required to write a tutorial and in the end becuase other target's caught my
attention.But my 'luck' is that i almost had a fracture at my right foot so i'm home 10 days
enjoying the free time.This brings me allot of memories: i began cracking after fracturing my
left arm :), but at that time i was going to school.Hope you and enjoy this tutorial.

One of the final reasons for releasing this tutorial is showing you a new great
method of finding the calls in the miracl bignum library, a method is very fast and almost fail
proof when it can be apllied.The method was brought to my attention by bRain_faKKer so we
owe him the discovery of this method,which i'll explain through out this tutorial.

TOOLS:

- IDA: for the best dissasembly possible of the crackme;
- Miracl Library (optional);

DIFICULTY:

I would say 2/10 but it mostly depends on the readers/crackers crypto knowledge.

TUTORIAL:

Load the program in any file identifier and we see it's a made with LCC,not packed or
anything.Load it up in ida and wait for the completion of the dissasembly process.

After that's done,look like always through the strings references and will find one
usefull hint:

aMiraclNotIniti db 'MIRACL not initialised - no call to mirsys()

Now that we know the program uses miracl library we need to discover what each
function of the protection is (e.g recognise the miracl function).At first i tried to use my
miracl.sig file from the bignum signature package,but with no great succes:a few function
were recognized but none of the protection it's self.So i'll give now the promised method.

If you ever dissasembled or if you are familiar with the miracl package you almost
sure know that most of the functions can be recognised by a 'magic number' which apears in
the body of the function.The particular thing is that the number is unique for that function
and doesn't change thought the different version of the library.Wanna see?
- for mirvar:

from source: MR_IN(23);
from ida: mov dword ptr [esi+eax*4+20h], 23;

- for set_io_buffer_size:
from source: MR_IN(142);
from ida: mov dword ptr [esi+eax*4+20h], 142;

To have an easy job in the future just do like i did: create a file with name+magic
key of every function.

So when you have to keygen for a crypto-keygenme, first thing you assure yourself
that it uses miracl and then when in need for identifying a function just look in the function
for this instruction:

mov dword ptr [esi+eax*4+20h], XX
Take XX value and search it in your magic table and you have yourself the function.

It's easy isn't it?One minor thing is that some of the function don't have a magic number but
those are,as i observed, functions that are from the raw core of miracl,this means function to
allocate memory,setup things and other stuff.

Let's get to the protection:

.text:004013A1 push 100h ; nMaxCount

.text:004013A6 push offset unk_40C148 ; lpString

.text:004013AB push 65h ; nIDDlgItem

.text:004013AD push edi ; hDlg

.text:004013AE call GetDlgItemTextA

.text:004013B3 mov ds:dword_40B92C, eax

.text:004013B8 push 100h ; nMaxCount

.text:004013BD push offset byte_40B018 ; lpString

.text:004013C2 push 67h ; nIDDlgItem

.text:004013C4 push edi ; hDlg

.text:004013C5 call GetDlgItemTextA

This get's the name and serial.
Let's go on:

.text:004013FB mov eax, ds:dword_40B008

.text:00401400 movzx eax, ds:byte_40B018[eax]

.text:00401408 mov ds:dword_40B00C, eax

.text:0040140D cmp eax, 41h

.text:00401410 jb short loc_401417

.text:00401412 cmp eax, 46h

.text:00401415 jbe short loc_401438

.text:00401417

.text:00401417 loc_401417:

.text:00401417 mov eax, ds:dword_40B00C

.text:0040141C cmp eax, 30h

.text:0040141F jb short loc_401426

.text:00401421 cmp eax, 39h

.text:00401424 jbe short loc_401438

.text:00401426

.text:00401426 loc_401426:

.text:00401426 push offset aInvalidKey ; lpString

.text:0040142B push 67h ; nIDDlgItem

.text:0040142D push edi ; hDlg

.text:0040142E call SetDlgItemTextA

.text:00401433 jmp loc_401593

This code checks that the serial is in hex format (0123...DEF)
Let's go on (the miracl function are already indentified by me using the method

explained previos and some local variable are renamed after their use):

.text:00401452 push 0

.text:00401454 push 0FA0h

.text:00401459 call mirsys

.text:0040145E mov [ebp+var_4], eax

.text:00401461 push 0

.text:00401463 call mirvar

.text:00401468 mov ds:big_result, eax

.text:0040146D push 0

.text:0040146F call mirvar

.text:00401474 mov ds:big_modulus, eax

.text:00401479 push 0

.text:0040147B call mirvar

.text:00401480 mov ds:big_e, eax

.text:00401485 push 0

.text:00401487 call mirvar

.text:0040148C mov ds:big_serial, eax

.text:00401491 push 0

.text:00401493 call mirvar

.text:00401498 mov ds:big_name, eax

This code initilises miracl and creates 5 bignums.
Next:

.text:004014AA push ds:big_name

.text:004014B0 push offset name

.text:004014B5 push ds:len_name

.text:004014BB call bytes_to_big

.text:004014C0 push offset serial

.text:004014C5 push ds:big_serial

.text:004014CB call cinstr

.text:004014D0 push offset modulus

.text:004014D5 push ds:big_modulus

.text:004014DB call cinstr

.text:004014E0 push ds:big_e

.text:004014E6 push 10001h

.text:004014EB call _convert

.text:004014F0 push ds:big_result

.text:004014F6 push ds:big_modulus

.text:004014FC push ds:big_e

.text:00401502 push ds:big_serial

.text:00401508 call powmod

.text:0040150D push ds:big_result

.text:00401513 push ds:big_name

.text:00401519 call _compare

.text:0040151E add esp, 58h

.text:00401521 or eax, eax

.text:00401523 jnz short loc_40152F

.text:00401525 mov ds:flag, 1

So now it put's the name as a bignum,reads the serial and the moduluis as a hex
bignum.Will find later what's the value of modulus.

Then it put's a prime integer (10001h) in a bignum.If you are familiar with rsa you
would know that this number is the most used number as the encryption exponent.After this
it performs a powmod operation:

big_result = big_serial^10001h mod big_modulus
It certainly looks like rsa :)
If you execute the crackme in a debugger you'll see that the modulus it's our magic

key generated by the program;so let's see how it's generated.For this we need to go into the
WM_INITDIALOG function:

.text:004015BB call GetTickCount

.text:004015C0 push eax

.text:004015C1 push [ebp+hDlg]

.text:004015C4 call sub_4012D5

So it get's the number of miliseconds since windows has been started and then calls
a procedure;let's go in it:

.text:004012D5 push ebp

.text:004012D6 mov ebp, esp

.text:004012D8 push edi

.text:004012D9 push 0

.text:004012DB push 0FA0h

.text:004012E0 call mirsys

.text:004012E5 mov edi, eax

.text:004012E7 mov dword ptr [edi+238h], 10h

.text:004012F1 push 0

.text:004012F3 call mirvar

.text:004012F8 mov ds:dword_40B11C, eax

.text:004012FD push 0

.text:004012FF call mirvar

.text:00401304 mov ds:dword_40C13C, eax

.text:00401309 push 0

.text:0040130B call mirvar

.text:00401310 mov ds:big_modulus, eax

.text:00401315 push [ebp+rnd]

.text:00401318 call ChangeSalt

So we see again the initialisation of miracl and the creation of 3 bignums.
Then we see a call to procedure that makes from the dword random salt

(GetTickCount) a word rnd value
Then:

.text:0040131D push ds:dword_40B11C

.text:00401323 push 20h

.text:00401325 call sub_401297

.text:0040132A push ds:dword_40C13C

.text:00401330 push 20h

.text:00401332 call sub_401297

.text:00401337 push ds:big_modulus

.text:0040133D push ds:dword_40C13C

.text:00401343 push ds:dword_40B11C

.text:00401349 call multiply

.text:0040134E push offset modulus

.text:00401353 push ds:big_modulus

.text:00401359 call big_to_bytes

.text:0040135E push offset modulus ; lpString

.text:00401363 push 66h ; nIDDlgItem

.text:00401365 push [ebp+hDlg] ; hDlg

.text:00401368 call SetDlgItemTextA

Inside sub_401297:

.text:00401297 push ebp

.text:00401298 mov ebp, esp

.text:0040129A push ebx

.text:0040129B push esi

.text:0040129C push edi

.text:0040129D mov esi, [ebp+arg_0]

.text:004012A0 mov ebx, [ebp+arg_4]

.text:004012A3 xor edi, edi

.text:004012A5 jmp short loc_4012B6

.text:004012A7 fill_prime_array:

.text:004012A7 call sub_40126A

.text:004012AC mov edx, eax

.text:004012AE mov ds:prime_array[edi], dl

.text:004012B5 inc edi

.text:004012B6

.text:004012B6 loc_4012B6:

.text:004012B6 cmp edi, esi

.text:004012B8 jb short fill_prime_array

.text:004012BA push ebx

.text:004012BB push offset prime_array

.text:004012C0 push esi

.text:004012C1 call bytes_to_big

.text:004012C6 push ebx

.text:004012C7 push ebx

.text:004012C8 call _nxprime

.text:004012CD add esp, 14h

.text:004012D0 pop edi

.text:004012D1 pop esi

.text:004012D2 pop ebx

.text:004012D3 pop ebp

.text:004012D4 retn

So now it's obvious that this routine creates a random 256bit table from the 16bit
random value;then it put's it in a bignum and increments it untill a prime number is reached.

So the modulus is the product of two random prime numbers.
Now we can say for sure that the protection of the crackme consists in a runtime

RSA-512.
For us to make a keygen we need to find out the decryption exponent: D.
If we would only have the modulus and the encryption exponent like in the regular

rsa it would have been impossible for us to make a keygen coz it we would have needed to
factor the 512 bit modulus.

But we have an advantage:we know that each of the primes that make up the
modulus are generated from a random 16bit value and how the prime numbers are built
starting from this random number.

So to make a keygen:
1. We take user name to generate serial
2. We take the magic key from the crackme
3. We take each value from 0 to FFFFh and create a prime bignumber to see if it's a

factor of the magic key.We have 2^16 posibilities so it should be pretty fast.After step we
should have the two factors of modulus: q and p

4. We now need to find the decryption exponent.This is done by solving:
d*e=1 mod [(p-1)(q-1)]
d= e^(-1) mod [(p-1)(q-1)]

5.We have
serial=name^d mod modulus

This is all we need to do.
Nice crackme from bart.
Regards,

bLaCk-eye

PS:Check the source of the keygen if you failed to understand something.

GREETZ:

- all Kanal23 members (www.kanal23.knows.it)
- all tkm members

- everybody that knows me and bares with me and my stupid questions sometimes: you
know who you are.

mycherynos@yahoo.com

